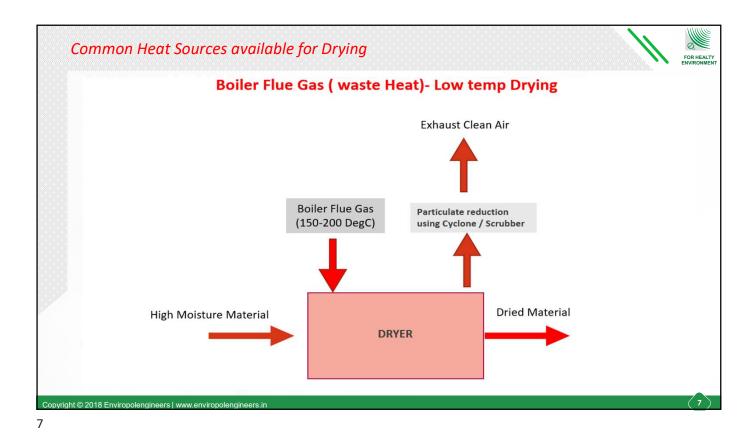
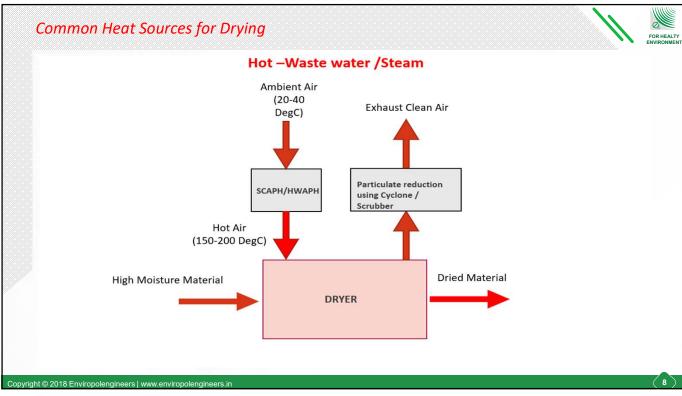
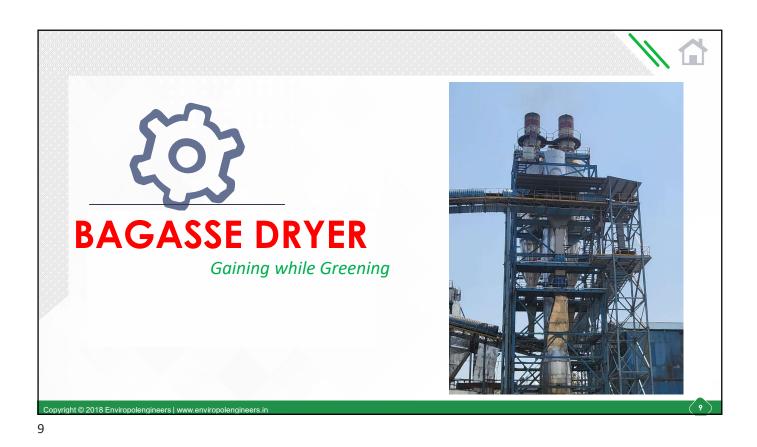


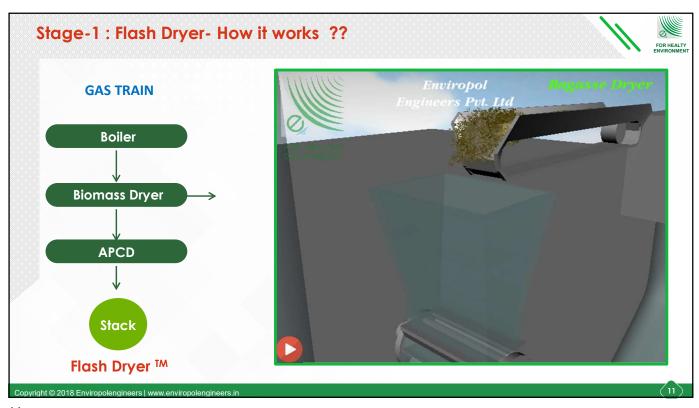
Why is the demand growing for Biomass Drying??? FOR HEALTY Agricultural Net Zero Carbon emissions by 2070 Marine & Mandate to replace fossils fuels by 20 % **Fermantat** production in Process Usage of biomass for other applications Biomass densifications Sharp increase in price of Bagasse/ Biomass Forestry **Biomass** Crops & Residuces Sources Industrial Residues **Animal**

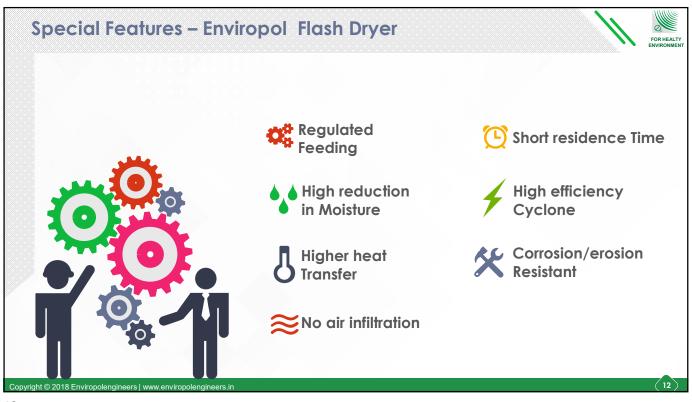

Biomass Type..... FOR HEALTY **SUGAR CANE OTHERS - Primary OTHERS** -Secondary Chipper dust Bagasse Coffee Husk **Tamarind Shell** Corn waste Saw dust Mill Bagasse **Groundnut Shell** Screen/ Knots Bagasse Pith Julia flora Coconut Shell rejects Horkel Pith ETP Filter Cake Coconut Fiber Bark Rice Husk Coir waste Match stick waste Cane Trash Rice Straw Mango seed Wheat MLSS Straw right © 2018 Enviropolengineers | www.enviropolengineers.in

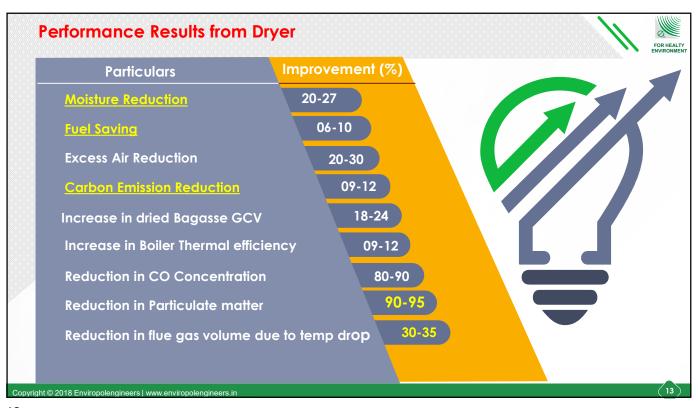

3


Sugar Cane Based Biomass- Moisture ,Ash and GCV **Total moisture** % 48-52 63 50.0 18 - 20 Ash on Dry 2.5 4.1 4.5 18 % basis GCV on Dry 4000 4400 k cal /kg 4540 4035 basis k cal /kg 2180-2360 1580 2020 3520-GCV on ARB 3620

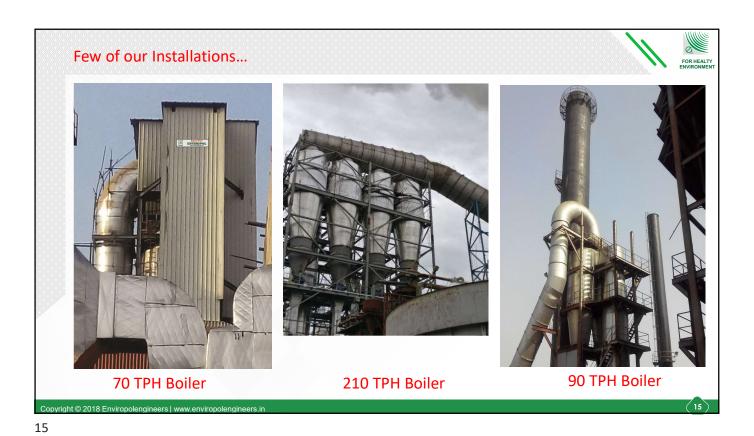
New dimension- in Drying Technology


Prolonged Cogeneration


Fuel Saving


PAT
Escrit Cordits

Improved Boiler
Operations & Efficiency


Copyright © 2018 Enviropolengineers in www.enviropolengineers in the same of the same

Case Study: - Innovative Bagasse Dryer in HP Cogen Boiler

BAGASSE F	FIRED HP BOILER	
arameter	Design Value	Units
ıel	Bagasse	
oisture in Mill Bagasse	50	%
eam Evaporation [MCR]	80	TPH
eam outlet Pressure	87	Ksc
eam outlet temperature	515	°C
eed Water Temperature from HP eater to Economizer	180	°C
raught system	Balanced- FD & ID Fans	
ue gas temperature at APH out	145	°C

Flue gas temperature at APH out 145
APC Device ESP
Back end Equipment Economizer& APH

DESIGN INPUT PA	RAMETERS	1
Description	Unit	Value
Boiler Steam Generation Capacity	TPH <	80
Bagasse Dryer Capacity	TPH	31
Bagasse moisture at inlet	0%	49
Temperature of inlet flue gas (*)	Deg C	140
Quantity of inlet flue gas	m³/sec	60
Particle size distribution	7	Standard
Quantity		1 Set
DESIGN OUTPUT P	ARAMETERS	
Predicted moisture in Bagasse at outlet	%	39.5±0.2
Predicted flue gas temperature at outlet	Deg C	70±2
Predicted pressure drop across dryer	Mmwc	135±10

Copyright © 2018 Enviropolengineers | www.enviropolengineers.in

17

Data Collection-Avg. data from 4 tests

Parameter	Boiler- Design	With Dryer	Units
Steam Generation	80	*71/87	TPH
Main Steam Pressure	86	86	kscg
Main Steam Temperature	515	517	°C
Feed water Temperature	180	186	°C
Flue gas outlet temp	133	72	°C
Fuel	Bagasse	Bagasse	3
Moisture Content	48-50	38.0	%
GCV of Fuel	2375 - 2270	2825	Kcal/kg
Fuel Temperature to Boiler	30	50-65	°C

(*) On the day of testing, steam demand was only 71 TPH on 24 hrs. average basis. However the Boiler steam generation capacity enhanced to about 87 TPH on account of reduced moisture in bagasse

For Healthy Environment

Mill Bagasse

Dry Bagasse

Copyright © 2018 Enviropolengineers | www.enviropolengineers.in

Performance Results---

BCML- PERFORMANCE WITH DRYER

Parameter	Without Dryer in operation	Energy Gains with Dryer	Increase/ Reduction
Bagasse Moisture	47.63 %	38 %	9.63 pp [20%]
Bagasse GCV	2375 kcal/kg	2810 kcal/kg	18%
Bøller Thermal Efficiency	70 %	76 %	6 % point
Steam Economy Upgrade	2.4 -2.5	3.1- 3.2*	11-12%
Flue Gas Temp to Stack	133°C	72°C	61°C
Excess Air Reduction			~20%
CO ₂ Reduction		2	33-35 t/CO2e/day
SPM reduction in FG		e e	80- 90%
NOx reduction est.		3	15-20%
N2O reduction est.		3	5-10%

(*) Considering reduced weight of bagasse after dryer.

R.O.I

If we follow the power generation route, the net saving works out to INR 1, 12,390per day considering current power tariff of INR 3.0 /kWh to the grid.

The savings, on account of sale of bagasse to other industry is calculated to INR 92,400per day considering the current rate of bagasse as INR 1750 / Ton.

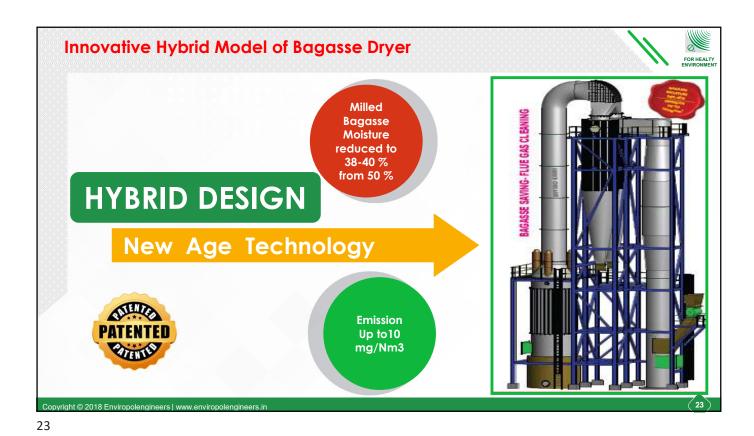
The above figure represents a Return on Investment well within less than 500 working days.

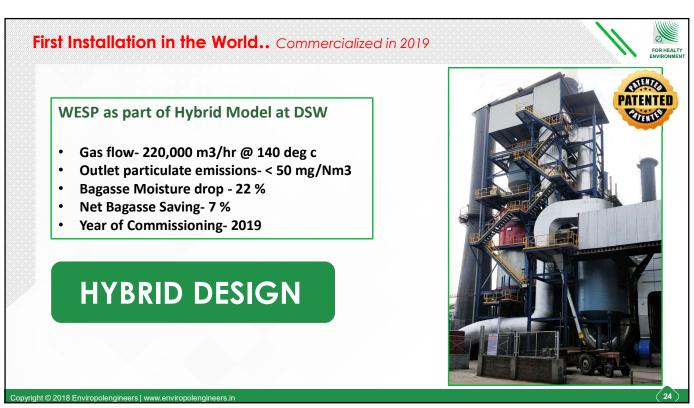
Copyright © 2018 Enviropolengineers | www.enviropolengineers.in

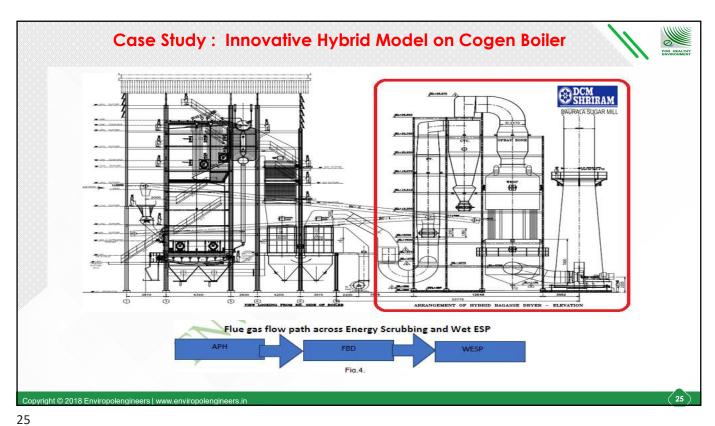
19

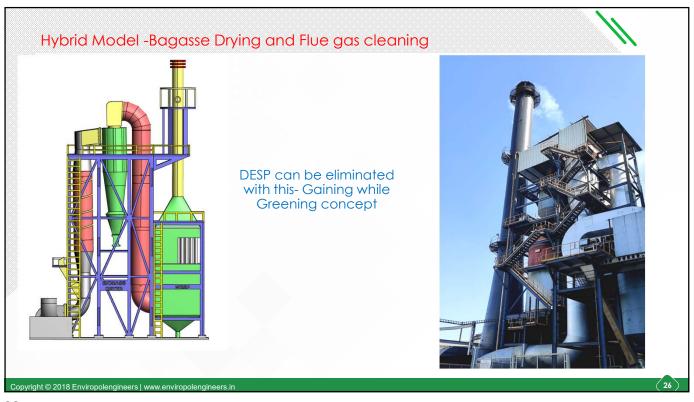
Short Video of BCML installation during commissioing

Common **Fears** /Queries in the Mind of End Users before Installation


- Fire Hazard
- Jamming /Choking
- Temp Range of heat source
- Loss of Volatiles Matters
- Weather to install in suction/Pressure
- Operations and Maintenance
- · Adaptability of dried bagasse
- Return on Investment
- Operations and Maintenance
- Decarbonization –Carbon Credits and Es certs
- Outlet Emissions


Copyright © 2018 Enviropolengineers | www.enviropolengineers.ii


21


21

... Summary of Tests conducted during the season

Average of 4 Tests conducted during the season

Particulars	Unit	APH outlet- Dryer inlet	Dryer outlet- WESP inlet	WESP outlet- Stack
Flue gas Temp	° C	135	72	68
Bagasse Moisture	%	50	39	-
Particulate in gas Emission	mg/Nm3	4000	195	32-35
Flue gas Draught	mmWC	130	260	280

Copyright © 2018 Enviropolengineers | www.enviropolengineers.in

27

27

Benefits Achieved from Hybrid Model At DSW....

Qualitative Gains

- Bagasse Drying & Flue gas cleaning in one go
- Particulate Emission Control well below CPCB norms for Stack pollutants discharge
- Substantial Control on Gaseous pollutants discharge
- Lower Power Consumption as compared to conventional route (ESP followed by Dryer)
- Carbon Emission reduction with increased Green Power and lowered GHG emission
- Smaller Footprint & Compact Lay-out for Enviro-Energy scheme

Quantitative Gains

- BD & WESP integrated Particulate Emission reduction: > 99.1%
- Milled bagasse Moisture reduction [& GCV in fuel increase] :22 %
- ➤ Net Bagasse saving: 6.5 %
- Productivity enhancement : 9 %
- Carbon Emission Reduction-: -30 tCO₂e/day [900 tCO₂e/month]
- Revenue generated : INR- 250 Lac/ 170 Days + Carbon Credits and Escerts trading

Summary..

What all a Hybrid Model can Deliver for 20 MW Bagasse Based Cogeneration Plant

Extra Green Energy Produced: 1.2-1.5 MWh

Particulate emissions: 10-50 mg/Nm3

Other Pollutants Reduction...

Stack Flue Gas	Other Pollutants
SO2	Absent
Hg Compounds	Absent
Amino-acid	Countered with Alkaline water scrubbing

Gaseous pollutants Reduction...

Location	GHG Emission Reduction
	tCO2e/m
Additional Green Power	900-1200
N ₂ O reduction	100-150
Overall Emission reduction	1000-1350

Copyright © 2018 Enviropolengineers | www.enviropolengineers.in

29

29

Potential For Replication...

Considering (+) 530 sugar Mills & (+) 10,000 MW of Bagasse based cogeneration presently available in India, Hybrid model of bagasse dryer has a great potential for replication to produce

Additional Clean Green Energy : 2500 GW

Reduction in GHG: +2.5 million tCo2e

on yearly basis

(considering 170 days of sugar cane crushing season /Year)

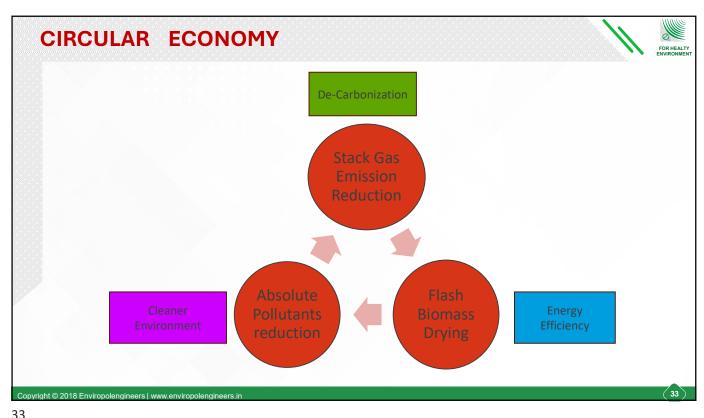
Potential For Replication...

Considering (+) 552 Paper & Pulp Mills besides 48 PAT related P& P mills presently in operation in India, Hybrid Model of Biomass Dryer has a great potential for replication to produce

Reduction in GHG: +2.0 million tCO₂e
on yearly basis
Besides quantum increase in Green Energy &
Cleaner Environment

Similar opportunity lies for other industries using biomass

Copyright © 2018 Enviropolengineers | www.enviropolengineers.in


31

- With Sugar sector coming under PAT [as per the Min.of Power Notification of May 2023], the increase in specific steam generation in boilers with dried bagasse firing would be availing of EsCerts.
- Over & above, the very recent Min. of Power Gazette notification on Carbon Credit Trading Scheme [June 2023], the above renewable energy gains can be related to displacement of equivalent imported coal firing in boilers elsewhere. In essence, Flash Biomass Dryer would contribute to EsCerts & Decarbonization.

AIR POLLUTION REDUCTION- way forward

Absolute Emission Reduction

With increased Boiler thermal efficiency with FDB in place, the quantity of fuel burnt is lowered; resulting in reduction of all gaseous pollutants viz., SO2,NOx, N2O,HgO & CO2, through stack flue gas to landscape.

Specific Emission Reduction

Solid Pollutants [SPM, PM10 & PM 2.5] in stack flue gas shall be considerably lowered [< 30 mg/Nm3] through WESP in place . Waste heat recovery in Clarified water used in WESP through Boiler make up feed water heating in wide-gap PHE .

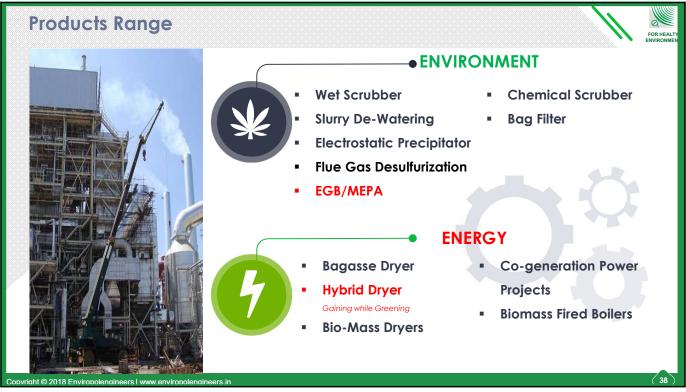
Temperature Reduction

Having a norms on temperature of any gas going to environment will lead to reduction in absolute and specific emission reduction.

· Subsidies on capex

CONCLUSION...

The Hybrid Dryer/WESP is a way forward to view the investments on Air Pollution Control Device- APCD as revenue generating projects through Flue gas cleaning & Bagasse saving/ producing additional clean energy & Contributor to Low Carbon Economy.


The Integrated Wet Electrostatic Precipitator-WESP, being the most advanced emission control technology in the world as on today, and its presence as last equipment before stack makes the Hybrid Model a perfect device to maintain cleaner environment even during varying operating conditions of Bagasse Dryer.

The Hybrid scheme can be easily extended to other High Moisture fuels viz., Bagasse pith [55 to 60 %], Chipper dust etc.

Copyright © 2018 Enviropolengineers | www.enviropolengineers.in

37

